End-to-end annealing of plant microtubules by the p86 subunit of eukaryotic initiation factor-(iso)4F.

نویسندگان

  • J D Hugdahl
  • C L Bokros
  • L C Morejohn
چکیده

The p86 subunit of eukaryotic initiation factor-(iso)4F from wheat germ exhibits saturable and substoichiometric binding to maize microtubules, induces microtubule bundling in vitro, and is colocalized or closely associated with cortical microtubule bundles in maize root cells, indicating its function as a microtubule-associated protein (MAP). The effects of p86 on the growth of short, taxol-stabilized maize microtubules were investigated. Pure microtubules underwent a gradual length redistribution, an increase in mean length, and a decrease in number concentration consistent with an end-to-end annealing mechanism of microtubule growth. Saturating p86 enhanced the microtubule length distribution and produced significantly longer and fewer microtubules than the control, indicating a facilitation of annealing by p86. Confirmation of endwise annealing rather than of dynamic instability as the mechanism for microtubule growth was made using mammalian MAP2, which also promoted the redistribution of length, increase in mean length, and decrease in number concentration of taxol-stabilized maize microtubules. Enhancement of microtubule growth occurred concomitant with bundling by p86, indicating that an alignment of microtubules in bundles facilitated endwise annealing kinetics. The results demonstrate that nonfacile plant microtubules can spontaneously elongate by endwise annealing and that MAPs enhance the rate of annealing. The p86 subunit of eukaryotic initiation factor-(iso)4F may be an important regulator of microtubule dynamics in plant cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Potential Mechanism of ZFX Involvement in Cell Growth

Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...

متن کامل

Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity.

The 5'-cap and the poly(A) tail act synergistically to increase the translational efficiency of eukaryotic mRNAs, which suggests that these two mRNA elements communicate during translation. We report here that the cap-associated eukaryotic initiation factors (eIFs), i. e. the two isoforms of the cap-binding complex (eIF-4F and eIF-iso4F) and eIF-4B, bind to the poly(A)-binding protein (PABP) bo...

متن کامل

Multiple mRNAs encode the murine translation initiation factor eIF-4E.

All eukaryotic cellular mRNAs (except organellar) possess at their 5' end the structure m7GpppX (where X is any nucleotide) termed the "cap." The cap structure facilitates the melting of mRNA 5' secondary structure through the action of initiation factor-4F (eIF-4F) in conjunction with eIF-4B. eIF-4F consists of three subunits of which one, eIF-4E (eIF-4E has recently been designated eIF-4 alph...

متن کامل

Translation Initiation Factor AteIF(iso)4E Is Involved in Selective mRNA Translation in Arabidopsis Thaliana Seedlings

One of the most regulated steps of translation initiation is the recruitment of mRNA by the translation machinery. In eukaryotes, this step is mediated by the 5'end cap-binding factor eIF4E bound to the bridge protein eIF4G and forming the eIF4F complex. In plants, different isoforms of eIF4E and eIF4G form the antigenically distinct eIF4F and eIF(iso)4F complexes proposed to mediate selective ...

متن کامل

The relative contributions of polymer annealing and subunit exchange to microtubule dynamics in vitro

Microtubules that are free of microtubule-associated protein undergo dynamic changes at steady state, becoming longer but fewer in number with time through a process which was previously assumed to be based entirely on mechanisms of subunit exchange at polymer ends. However, we recently demonstrated that brain and erythrocyte microtubules are capable of joining end-to-end and suggested that pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 1995